

Oilregeneration - positive Aspects on Transformeroils

Naal Nayef & Marcel RybenskyFiltervac

Mr. Na`al Nayef is a professional mechanical engineer working as the Engineering and Sales manager for Filtervac International Inc.; Mr. Nayef has been involved in the green energy products development in terms of design, manufacturing and testing. With over 19 years' experience in high level engineering and several patents awarded in the green energy sector; Mr. Nayef has gained reputable role in improving performance and economics for oil treatment systems sector.

Oilregeneration - positive Aspects on Transformeroils

Oil Regeneration - Positive Aspects on Transformer Oils

FILTER VAC INTERNATIONAL INC.

Transformer Oil Regeneration

Oilregeneration - positive Aspects on Transformeroils

PRESENTATION OVERVIEW

- TRANSFORMER OIL FUNCTIONS
- OIL & PAPER INSULATION DEGRADATION FACTORS
- **O EFFECTS OF OIL RE-GENERATION AND OIL CHANGING**
- CHANGING THE TRANSFORMER OIL WILL NOT SOLVE THE PROBLEM
- THE SOLUTION OIL REGENERATION
 - OIL REGENERATION KEY PROPERTIES IMPROVEMENT
 - **WHEN SHOULD REGENERATION TAKE PLACE?**
 - **OIL COLOUR**
 - ✓ OIL COLOUR RESTORATION
 - ✓ PRACTICAL EXAMPLE IMPROVING OIL PROPERTIES (OIL COLOUR)
- **OIL SLUDGE**
 - SLUDGE FORMATION IN OIL AND TREATMENT BY REGENERATION
- **O CORROSIVE SULPHUR**
 - **SULPHUR COMPOUNDS**
 - **PRACTICAL EXAMPLES TREATMENT OF CORROSIVE SULPHUR**
- FILTERVAC'S OIL REGENERATION TEST RESULTS
- **O TYPICAL FILTERVAC ECOIL OIL REGENERATION RESULTS**
- ADVANTAGES OF OIL REGENRATION

TRANSFORMER OIL FUNCTIONS

 To provide dielectric strength of the transformer insulation system.

• To provide efficient cooling of transformer and arc quenching in tap changer

Protect from

• To protect the transformer core and coil assembly from chemicals reaction

• To prevent the build up of sludge in the transformer core & winding

• Oil is used as Diagnostic Tool to identify potential problems inside transformer.

Oilregeneration - positive Aspects on Transformeroils

OIL & PAPER **INSULATION DEGRADATION FACTORS**

www.filtervac.com

Heat

- Chemical reactions occur faster at higher temperatures
- Each 8 °C rise above design will cut the life of the paper in half

Oxygen

- The higher the oxygen content, the faster the reaction.
- 10 times transformer life at the same temperature if oxygen is < 300 ppm

Water

- . Doubling moisture content will cut transformer life by half
- Moisture content in insulation paper is hundreds of times greater than in the oil

Oil Oxidation

- Insulation paper has an affinity for acids, peroxides and other oxidation reactants
- Acid concentration of 0.1 mg KOH/gm will result in 35% reduction in tensile strength of insulation paper

EFFECTS OF OIL RE-GENERATION AND OIL CHANGING

www.filtervac.com

BOTH OIL CHANGE AND RE-GENERATION HAS BEEN PERFORMED ON TWO IDENTICAL TRANSFORMER.

The acidity increases rapidly after an oil change. As early as a few months the acidity level can reach the same levels as before the oil change. This increase is caused by cross contamination from residual oil and sludge left in the tank core and in the winding insulation. This will contaminate the new oil. Almost all embedded and deposited ageing residue products remain in the transformer. This will cause the rapid ageing of the new oil.

Oil Change

Once the transformer oil has been regenerated, the acidity levels are approximately the same after six years of operation as when first regerated. According to our world wide experience the acidity and other aging parameters, have acceptable values many years after oil re-generation process.

Oil Re-Generation

Oilregeneration - positive Aspects on Transformeroils

Price to buy new oil is higher than price to regenerate old oil + high production loss due to shutdown.

Additional costs associated with disposing of used oil and the associated handling risks and potential environmental contamination

20% of old oil will remain in the transformer with no removal of sludge

New oil requires vacuum drying and filling system with additive injection.

Does not remove existing corrosive sulfur and DBDS in the oil

Interruption to transformer operation. Vacuum filling is not safe for aged transformer winding. More economical than oil changing; system is paid back within one to two years

Small amount of new oil is required for makeup. About 2 to 5% of the transformer volume is required for transformer top up.

Regeneration removes sludge and cleans transformer internal components

One system provides oil regeneration, vacuum filling and additive injection

Removal/Reduction of corrosive sulfur & DBDS by selecting CST Option in existing oil

No interruption to transformer operation utilizing Filtervac's On-line treatment option

THE SOLUTION

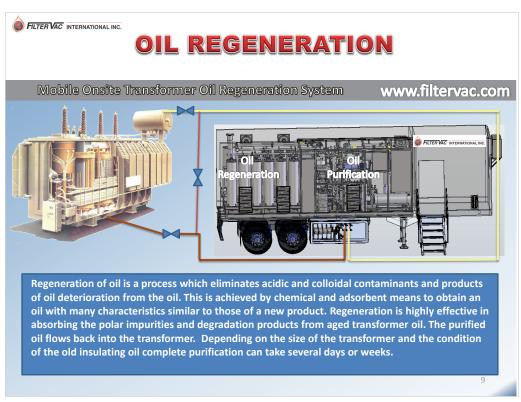
www.filtervac.com

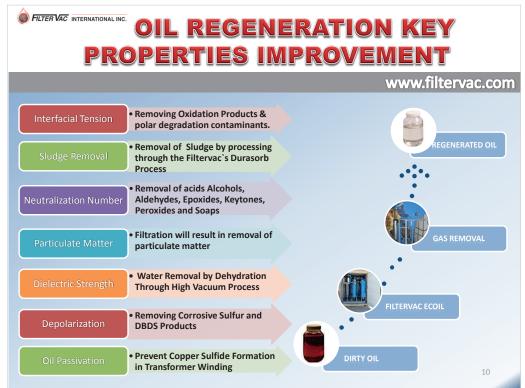
Oil Regeneration

Initial color

After 1 pass After 2 pass

After 3 pass


After 4 pass


After 5 pass After 6 pass Final Color

THE NUMBER OF PASSES IS DEPENDENT ON

- INITIAL OIL QUALITY BEING REGENERATED
- SIZE OF ELECTRICAL TRANSFORMER (QUANTITY OF OIL)
- CLAY AND FLOW RATE CAPACITY OF SYSTEM BEING USED TO REGENERATE
- TYPE OF TECHNOLOGY AND MANUFACTURER OF EQUIPMENT USED TO REGENERATE

Oilregeneration - positive Aspects on Transformeroils

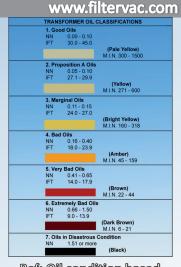
www.filtervac.com

When the oil shows unacceptable results for neutralization number "Acidity", interfacial tension, color, corrosive sulphur content and dissipation factor then the regeneration should be considered.

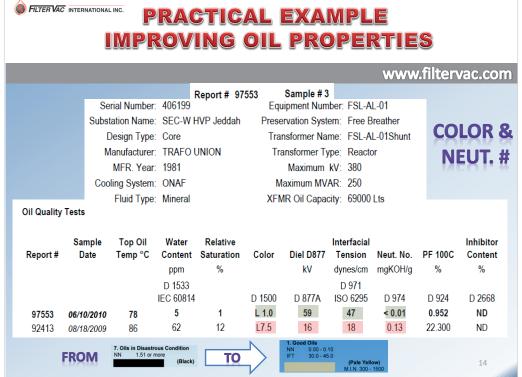
Since the aging of insulation is an irreversible process, it is important to reclaim at the right time before the degradation has gone too far


 Where perceptible sludge is detected reclaim oil

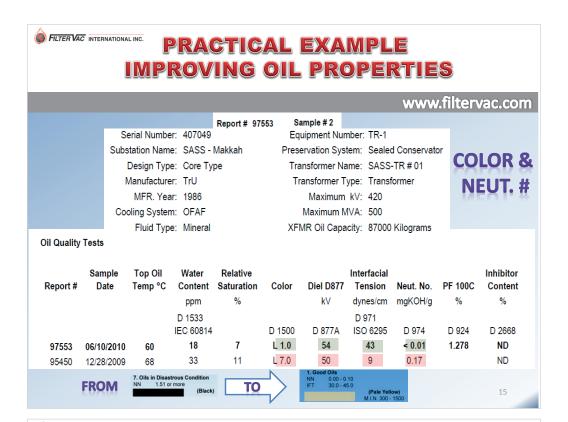
Sludge


11

OIL COLOUR VS ACIDITY VS IFT


- New Oil is Visually Clear in colour
- Turbidity, sludge, carbon and free water have an effect on oil colour
- Acceptable oil will be clear and bright, free from and visible contamination

Ref: Oil condition based on ASTM D 1500 colour testing 12



Oilregeneration - positive Aspects on Transformeroils

FILTER VAC INTERNATIONAL INC. PRACTICAL EXAMPLE IMPROVING OIL PROPERTIES www.filtervac.com Sample # 1 Report # 97553 Serial Number: 407047 Equipment Number: TR-2 Substation Name: SASS - West Makkah Preservation System: Sealed Conservator COLOR & Design Type: Core Type Transformer Name: SASS-TR # 02 Transformer Type: Transformer Manufacturer: TrU **NEUT.** # MFR. Year: 1986 Maximum kV: 420 Cooling System: OFAF Maximum MVA: 500 Oil Quality Tests Fluid Type: Mineral XFMR Oil Capacity: 87000 Kilograms Top Oil Water Relative Inhibitor Sample Interfacial Report # Date Temp °C Content Saturation Color Diel D877 Tension Neut. No. PF 100C Content dynes/cm mgKOH/g % ppm kV % D 1533 D 971 IEC 60814 D 1500 D 877A ISO 6295 D 974 D 924 D 2668 **52 16 5** 80 21 5 66 30 10 60 47 < 0.01 L 1.0 0.159 ND 97553 05/08/2010 L 1.0 43 < 0.01 1.290 96068 02/24/2010 65 ND L 7.0 60 19 0.12 ND 95450 12/28/2009

Oilregeneration - positive Aspects on Transformeroils

SLUDGE FORMATION IN OIL AND TREATMENT BY REGENERATION

www.filtervac.com

Sludge Formation Experience shows that this sludge material settles not only on the transformer winding, but also over the core , radiator fins and & on insulating parts of the transformer.

Sludge is soluble in new or regenerated oil at temperatures greater than 70 °C. Rinsing of the winding with oil by cycling the oil through the oil purifier will result in the "desludging" of the transformer.

Following the first regeneration cycle, it is advisable to interrupt the cycle of oil. This allows sludge to settle at the bottom of the transformer rather than the windings.

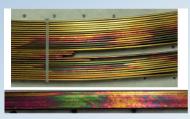
Treatment by Regeneration

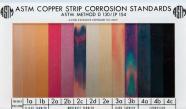
Recommended when there is a lack in preventive transformer maintenance.

Prevents oil sludge formation in the transformer.

Avoids rapid failure of the transformer insulating system and improves cooling effect in the oil during high load condition. Oil sludge prevents cooling.

Oil sludge that has already been deposited in the transformer core, Radiators & winding can be dissolved and removed by Regeneration process.


Oilregeneration - positive Aspects on Transformeroils



CORROSIVE SULPHUR

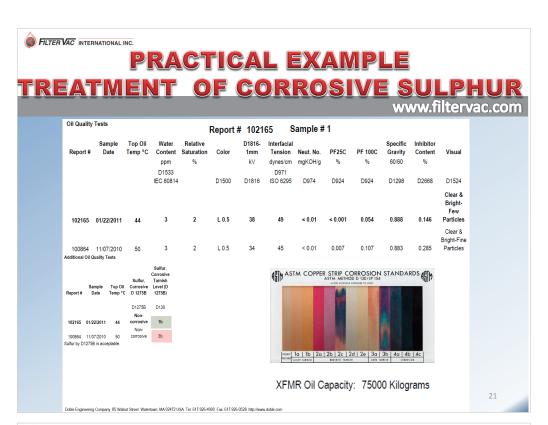
www.filtervac.com

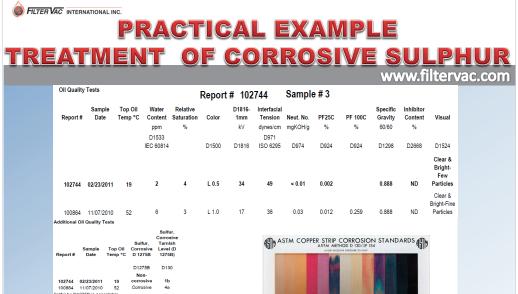
- **Elemental sulphur and thermally** unstable sulphur compounds in insulating oil cause corrosion of internal transformer components. In particular, metals such as copper and silver.
- Not formed in transformer's normal operational conditions
 - Known sources of contamination: poorly refined crude oil, addition of chemical compounds
 - Other Suspected sources: gaskets, water-based glues, copper and kraft paper

SULPHUR COMPOUNDS

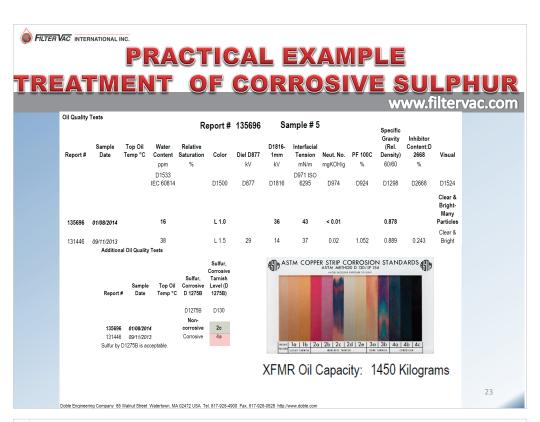
www.filtervac.com

- Multiple Sources = Multiple Compounds
- Thiophens, Disulphides, Thio-ethers, Mercaptans, Sulphur

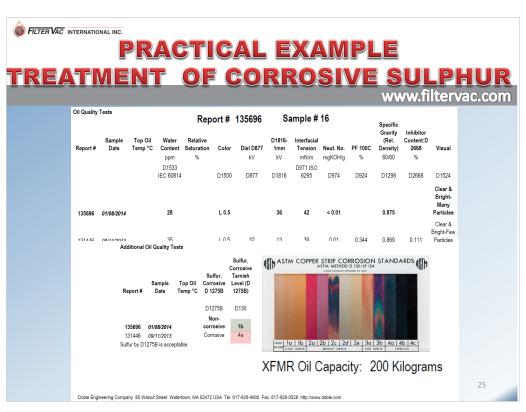

Increasing order of corrosion

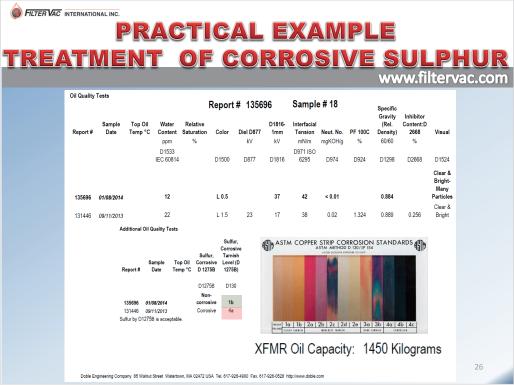

 Dibenzyl-Disulphide (DBDS) was identified experimentally to be a primary compound in corrosive sulphur related faults

Oilregeneration - positive Aspects on Transformeroils



XFMR Oil Capacity: 78460 Liters


Oilregeneration - positive Aspects on Transformeroils



PRACTICAL EXAMPLE TREATMENT OF CORROSIVE SULPHUR Www.filtervac.com Oil Quality Tests Report # 135696 Sample # 9 Sample Top Oil Water Relative D1816 Interfacial (Rel. Content.D)

Report #	Sample Date	Top Oil Temp °C	Water Content ppm	Relative Saturation %	Color	Diel D877	D1816- 1mm kV	Interfacial Tension mN/m	Neut. No. mgKOH/g	PF 100C %	Gravity (Rel. Density)	Inhibitor Content:D 2668 %	Visual
			D1533 IEC 60814		D1500	D877	D1816	D971 ISO 6295	D974	D924	D1298	D2668	D1524
135696	01/08/2014		31		L 0.5		37	38	< 0.01		0.876		Clear & Bright- Many Particles
131446	09/11/2013 Additio	nal Oil Qu	46 ality Tests		L 0.5	36	14	38	0.01	0.426	0.866	0.104	Clear & Bright-Fev Particles
	Repor	Sam t#Da		Oil Corr	Co Ifur, T rosive L	Sulfur, orrosive Tarnish evel (D 1275B)	4¶ AST	IM COPPE	ASTM METH	ORROSIC OD D 130/IP 1 e exposure to light	ON STANI	DARDS 4	M
	1356 9 13144 Sulfur b	16 09/11/		Corr Corr	275B on- rosive rosive	D130 1b 4a		la 1b 2a	2b 2c			4b 4c	
							XFM	R Oil	Сара	city:	300 I	Kilogr	ams

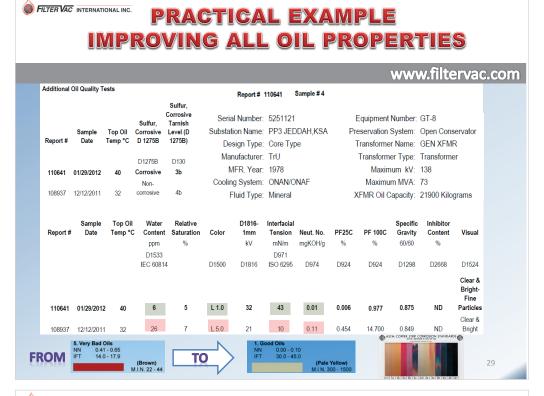
Oilregeneration - positive Aspects on Transformeroils

FILTERVAC'S OIL REGENERATION TEST RESULTS

www.filtervac.com

Oil Analysis of Regeneration by Fullers Earth treatment process 400kV Transformer, National Grid Company, UK

Test	Before Process	After Regeneration	After 1 Year Operation	After 2 Years Operation
Moisture ppm	23	8	10	11
Acidity mg KOH/gm	0.20	<0.01	0.01	0.02
Dielectric kV	35	76	71	69
Sludge content %	0.02	<0.01	<0.01	<0.01
Resistivity at 90°C	2.5	226	184	160
Dielectric Dissipation Factor (DDF) at 90°C	0.095	0.005	0.006	0.009
Oxidation Stability Total Acid mg KOH/g sludge% by mass	0.48 2.29	0.16 1.23	0.18 1.30	0.19 1.32
Viscosity at 40°C	11.9	11.8	11.8	11.6
Interfacial Tension	25	40	38	36
Corrosive Sulphur	Positive	negative	negative	negative
Phosphorus ppm	11	ND	ND	ND


TYPICAL FILTERVAC ECOIL OIL REGENERATION RESULTS

www.filtervac.com

No	T8est Parameter	ASTM Test	Unit	Before Regeneration (Dirty Oil)	After Regeneration (Cleaned Oil)	IEEE limits
1	Colour	D-1500	L	>7.0	0.5	Max. 2.0
2	Corrosive Sulphur	D-1275		Corrosive	Non-Corrosive	
3	Breakdown Voltage (2mm Gap)	D-877 Part B	KV	15	> 40	Min. 30
4	Gas content	D-3612	%	15	0.1	
5	Interfacial Tension	D-971	Dynes/cm	10	40 -50	Min. 30
6	Neutralization Number	D-974e	mgKOH/g	0.8	0.01	Max. 0.05
7	Water Content	D-1533	ppm	100	> 10	Max. 20

Oilregeneration - positive Aspects on Transformeroils

FILTER VAC INTERNATIONAL INC.

SUITABLE FOR ALL POWER TRANSFORMERS

ADVANTAGES OF OIL REGENRATION

www.filtervac.com

Extension of the transformer service life and increase reliability of transformers operation

Significant financial savings compared to oil replacement, including handling and disposal costs. Economically independent of the current price of new oil

No problems with transport and disposal of the used transformer oil. No operational loss caused by transformer shutdown (Online process)

In contrast to an oil replacement the transformer internal components and insulation are also cleaned.

Improves the quality of insulating oil to that of new oil.

Sustainable improvement in the condition of the insulation.

